

The German Experience

International Seminar on **Nuclear Decommissioning** 11-12 Dec 2014, Milano, Italy

Iris Graffunder **EWN GmbH**

National Programme / Legal Basis in Germany

A company of the EWN-Group

□ Decommissioning, Fuel disposal, Waste treatment and Interim storage of Nuclear Installations

Responsible: Operating companies → "Polluter-pays" principle Decommissioning costs: approx. 700 – 1000 million Euro per NPP

☐ Final disposal (licensing, construction and operation of a repository)

Responsible: Government

But: operators has to pay everything → "Polluter-pays" principle Estimated costs repository KONRAD (LAW+MAW): 7,5 billion Euro (incl. 40 years operation)

□ Problem

No repository → longer iterim storage periods → increasing costs

NPP Situation in Germany before Fukushima

NPP Situation in Germany after Fukushima

A company of the EWN-Group

Shut down schedule

is fixed by law (revised Atomic law 24. Feb 2012)

Decommissioning Projects at EWN-Group

EWN Group is completely government-financed

A company of the EWN-Group

(from 2003)

WAK GmbHSubsidiary

(from 2006)

(since 2009: HDB, KNK, MZFR, FR2)

EWN GmbH

Parent Company

NPP Greifswald at Lubmin

NPP Rheinsberg

... and 25% Holding of DBE GmbH (Building and operation company of federal facilities for final storage of radwaste) since 2008

Quantity of repository waste at EWN-Group

A company of the EWN-Group

	Parent Company EWN GmbH		Subsidiary AVR GmbH	Subsidiary WAK GmbH
	NPP Greifswald	NPP Rheinsberg		Including decommissioning projects and HDB
high level waste → Repository t.b.d.	61 CASTOR 440/84	4 CASTOR 440/84	152 CASTOR AVR	5 CASTOR HAW28M 4 CASTOR KNK several drums
low and medium level waste → KONRAD	7,790 m ³	1,900 m³	4,821 m³	71,369 m³

Summation of KONRAD waste quantity: 85,880 m³

→ corresponds to 77 % of public KONRAD waste quantity and to 28 % of total KONRAD waste quantity

Decommissioning strategy at Greifswald Site ...

A company of the EWN-Group

... starts with waste management

➤ Construction of a large interim storage for spent fuel and waste → ZLN

Design of Interim Storage North ZLN

Decommissioning strategy at Greifswald Site

- □ Packaging of spent fuel into CASTOR 440/84 casks and move it from reactor to ZLN
- Starting of dismantling in unit 5 with low contamination and low dose rate (for testing)
- Using equipment usual in the market
- In situ decontamination only for dose reduction not for free release
- Disassembly as large components as possible
 - steam generators
 - pressurizers
 - main cooling pumps etc.
- Storage of components at ZLN for decay and later treatment

Primary strategy for dismantling of reactor vessel

Changing strategy for dismantling of reactor vessels

A company of the EWN-Group

→ Cutting the internals, but disassembly the vessel as large component (reactor 5)

key data

Length: approx. 12 mDiameter: approx. 4 m

• Weight: 214 Mg

• Total activity: 2.4 E+12 Bq

Average specific total activity:

1.2 E+04 Bq/g

Transport to ZLN

Changing strategy again for dismantling of reactor 3 and 4

A company of the EWN-Group

→ Disassembly of the vessel with its internals as one large component

Advantage:

- Economy of dismantling time
- Contamination minimization
- Using the vessel as shielding for the highly activated internals during storage at ZLN

Total Quantity of large EWN components at ZLN

Waste management strategy in general

☐ Free release as much as possible (also burnable waste)
Disassembling of components as large as reasonable possible to decoupling dismantling and waste treatment
Quick completion of decommissioning work inside the reactor building and providing jobs at waste treatment facilities for many years
Decay storage before treatment
Decay storage of overload KONRAD containers
Decay storage before free release (also building structure)

Application of know how:

Management of decommissioning Russian's nuclear submarines

A company of the EWN-Group

Main goal: Safe and long term storage of 120 reactor compartments at Saida Bay and further treatment

Starting with the project 2003 at **Murmansk**

Expansion: Waste Managament Center (completion 2014)

Application of know how: Dismantling of Obrigheim NPP Reactor and Waste Management

Lessons learned (I)

A company of the EWN-Group

Important factors for decommissioning strategy

- ☐ radiological factors (dose rate, main nuclides, activation or contamination)
- geometrical factors (free space inside facility, structural calculation of the building, crane capacity)
- Existence of waste treatment and storage facilities
- Existence of repository requirements
- Existence of transport and/or storage casks

Important factors for saving money during decommissioning

- © You can save money with the right choice of dismantling tools
- © You can save much more money with the right choice of waste strategy

Lessons learned (II)

A company of the EWN-Group

Important rules during decommissioning

- Waste management begins in the decommissioning planning stage, not after production of waste drums
 First question should always focus on <u>what kind</u> of waste you want to generate
 Second question is <u>how</u> and <u>where</u> to generate this waste (dismantling strategy, cutting methods and tools)
- ☐ If you already have a contaminated containment, cut the waste there
- If you have a rather clean containment, plan your decommissioning with the aim to generate and handle the waste with the lowest contamination dispersion and transport it to a waste treatment facility

Lessons learned (III)

A company of the EWN-Group

Concrete structure decontamination and demolition

- Deep Penetration of contamination up to impact to static
- First performance parameters (0.2 m²/Mh) and surface area to be managed (105.000 m²/unit) show a 4 (!) times higher workscope than the workscope for dismantling the controlled area (without reactor)
- ☐ Same experience at EWN and WAK (Example: Remote controlled dismantling of the processing cells of reprocessing plant takes 2-3 years, decontamination and free measurement takes about 16 years)
- The often made statement "We are 90 % ready" after dismantling of the activated and contaminated components is not true!

 With respect to the activity YES, but not with respect to the time schedule.

Common Challenges

- ☐ Missing final repositories in Germany
- has consequences to decommissioning strategy, dismantling sequences and waste management
- leads to long term interim storage of fuel and substantial cost increases at all storage sites in Germany
- ☐ Long time schedule of decommissioning projects leads to
- Needs of generation change management including know how transfer
- Expensive facilities refurbishment due to new security requirements
- Additional costs for prolongation/ adaptation of licenses

Thank you for your attention

Safety and Responsibility. For Decades.